
AD-A204 904 7 E IN.TL.CM.NSIRiAD D 81'T C1]O$

_NTA]_ION PAGE BEFORE Co0 LrTG TPO-R.M
12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: Rolm MIL- 27 May 1988 to 27 May 1988
SPEC COMPUTERS ADE/32 Revision 3.00 Host MV/20000; 27 .My 198t 7 MBER

Target: ROLM HAWK/32 6. PERFORMING)RG. REPORT NUMBER

7. AUTHOR() 8. CONTRACT OR GRANT NUMBER(s)

NBS

Gaithersburg, MD

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

NBS

Gaithersburg, MD

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense 13 NUbUf o Aib
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(If different from Controling Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

NBS 15a. RjUSjFIICATONDOWNGRAOING

Gaithersburg, MD
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. D STRI BUT ION STAT EME NT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

ADE/32 Revision 3.00, Rolm MIL-SPEC COMPUTERS, NBS, Gaithersburg, MD, MV/20000 under
AOS/VS, Revision 7.56 (Host) to ROLM HAWK/32 under AOS/VS, Revision 7.56 (Target), ACVC

1.9.

DD tuM 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAX 73 S/N 0102-LF-014-8601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada Compiler Validation Summary Report:

Compiler Name: ADE/32 Revision 3.00

Certificate Number: 880527S1.09113

Host: MV/20000 under Target: ROLM HAWK/32 under
AOS/VS, Revision 7.56 AOS/VS, Revision 7.56

Testing Completed 27 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

Dr. David K. Jefferson
Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899 I

da Validatio Organization --.1
Dr. John F. Kramer
Institute for Defense Analyses__
Alexandria, VA 22311

Ada Jok't Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

.namnItl a i l l l 89I

AVF Control Number: NBS88VROL5401

Ada Compiler
VALIDATION SUMMARY REPORT:

Certificate Number: 880527SI.09113
Rolm MIL-SPEC COMPUTERS
ADE/32 Revision 3.00

HOST: MV/20000; TARGET: ROLM HAWK/32

Completion of On-Site Testing:
27 May 1988

Prepared By:
Software Standards Validation Group

Institute for Computer Sciences and Technology
National Bureau of Standards

Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

ChAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5
3.7.3 Test Site 3-6

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

I
CHAPTER 1

INTRODUCTION

This Validation Summary Report.-S&)- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability A"if . An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.-

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.--

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. - The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

Testing of this compiler was conducted by GEMMA Corporation, under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was completed 27
May 1988 at Data General, Research Triangle Park, North Carolina.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology

National Bureau of Standards
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form Al-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce compilation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A

1-4

test to check semantics. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler.
A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REPORT and CHECK FILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicabl, for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: ADE/32 Revision 3.00

ACVC Version: 1.9

Certificate Number: 880527S1.09113

Host Computer:

Machine: MV/20000

Operating System: AOS/VS
Revision 7.56

Memory Size: 64 MB

Target Computers:

Machine: ROLM HAWK/32

Operating System: AOS/VS, Revision 7.56

Memory Size: 8 MB

Communications Network: magnetic tape

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

Capacities.

The compiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative part. (See
test D55AO3A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 32 bit integer calculations. (See tests
D4AO02A, and D4AO04A.)

Predefined types.

This implementation supports the additional predefined types
SHORTINTEGER and LONG FLOAT in the package STANDARD. (See
tests B86001BC and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYStEM.MAX INT during compilation, or it may
raise NUMERICERROR or CONSTRAINT ERROR during execution. This
implementation raises a NUMERIC_ERROR during execution. (See
test E24101A.)

- Expression evaluation.

Apparently all default initialization expressions or record
components are evaluated before any value is checked to belong
to a component's subtype. (See test C32117A.)

2-2

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERICERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

- Rounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO14A.)

- Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYS_...MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGEERROR when the array objects are declared. (See
test C52103X.)

2-3

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises no exception.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype indications
during compilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

- Representation clauses.

2-4

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean
types are supported. (See tests C355021..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containing noncontiguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE -> 0, TRUE -> 1) are
supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Record representation clauses are not supported. (See test
A39005G.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_ 10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE220ID, and EE2201E.)

The package DIRECT_10 cannot be instantiated with unconstrained

2-5

array types and record types with discriminants without
defaults. (See tests AE2101H, EE240ID, and EE240IG.)

There are strings which are illegal external file names for
SEQUENTIAL_10 and DIRECTIO. (See tests CE2102C and CE2102H.)

Modes INFILE and OUTFILE are supported for SEQUENTIALIO.
(See tests CE2102D and CE2102E.)

Modes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECTIO. (See tests CE2102F, CE2102I, and CE2102J.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
(SEQUENTIAL_10 and DIRECT_10). (See tests CE2106A and CE2106B.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

An existing text file can be opened in OUTFILE mode, can be
created in OUT FILE mode, and can be created in INFILE mode.
(See test EE312C.)

More than one internal file can be associated with each external
file for text I/0 for both reading and writing. (See tests
CE3111A..5 (5 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for sequential I/0 for both reading and writing. (See
tests CE2107A..D (4 tests), CE2110B, and CE2111D.)

More than one internal file can be associated with each external
file for direct I/0 for both reading and writing. (See tests
CE2107F..I (4 tests), CE211OB, and CE2111H.)

An external file associated with more than one internal file can
be deleted for SEQUENTIALIO, DIRECTI0, and TEXT_10. (See test
CE211OB.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Gene-ic subprogram declarations and bodies cannot compiled in

separate compilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies cannot be compiled in

2-6

separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits cannot be compiled in
separate compilations. (See test CA3011A, LA5008M, and
LA5008N.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 257 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
Modifications to the code, processing, or grading for 2 tests were
required to successfully demonstrate the test objective. (See section
3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 107 1046 1612 15 13 44 2837

Inapplicable 3 5 241 2 4 2 257

Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 186 499 528 245 165 98 142 326 131 36 232 3 246 2837

Inapplicable 18 73 146 3 0 0 1 1 6 0 2 0 7 257

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35AO3E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87B04B CCl311B
BC3105A ADIA01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 257
tests were inapplicable for the reasons indicated:

C24113H..K (4 tests) contain lines of source code that are longer than
120, which is the limit for this implementation.

C35702A uses SHORTFLOAT which is not supported by this implementation.

3-2

A39005G uses a record representation clause which is not supported by
this compiler.

The following (13) tests use LONGINTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55BO9C

C45231D requires a macro substitution for any predefined numeric types
other than INTEGER, SHORTINTEGER, LONG INTEGER, FLOAT, SHORTFLOAT, and
LONGFLOAT. This compiler does not support any such types.

C45531I, C45531J, C455321, and C45532J use fine 32-bit fixed-point base
types which are not supported by this compiler.

C45531K, C45531L, C45532K, and C45532L use coarse 32-bit fixed-point
base types which are not supported by this compiler.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this compiler.

C4A0l3B uses a static value that is outside the range of the most
accurate floating-point base type. The declaration was rejected at
compile time.

D4AO02B and D4AO04B use 64-bit integer calculations which are not
supported by this compiler.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no such type for this
implementation.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation they are the same.

CA2009F and CA102A compile generic subprogram declarations and bodies
in separate compilations. This compiler requires that generic
subprogram declarations and bodies be in a single compilation.

CA2009C, BC3204C, and BC3205D compile generic package specifications and
bodies in separate compilations. This compiler requires that generic
package specifications and bodies be in a single compilation.

3-3

CA301A and LA5008M. .N (2 tests) compile generic unit bodies and
subunits in separate compilations. This compiler requires that generic
unit bodies and their subunits be in a single compilation.

AE2101C, EE220D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT_10
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this compiler.

CE3111B requires that one (internal) file be able to read a value that
was just written by another file that shares the same external file; but
this implementation raises ENDERROR, since the value has not yet been
flushed from the writing file's buffer. The AVO ruled that this is
acceptable behavior.

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
bf a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

Modifications were required for one (1) Class B test and one (1) Class C
tests.

BA1I01C was modified by commenting out "USE BAIIOICO" in order to
prevent a semantic error in the compilation of BAllOlC5 because
BAllO1C3's body was not added to the program library.

3-4

C4AO12B checks that CONTSTRAINT ERROR is raised for 0.0 ** (-1) or any
other negative exponent value. This implementation raises NUMERIC ERROR
instead of CONSZRAINTERROR as permitted by LRM 4.5.5 (12) and 11.6 (7).
This test was modified by the addition exception handlers for
NUMERICERROR and the modified test was passed. The test was run
without modification and the test reported that the wrong exception was
raised. The AVO ruled that either behavior (wrong exception or PASSED)
is acceptable.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the ADE Revision 3.0 was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the ADE Revision 3.0 using ACVC Version 1.9 was conducted
on-site by a validation team from the AVF. The configuration consisted
of a HOST: MV/20000 operating under AOS/VS, Revision 7.56, and a TARGET:
ROLM HAWK/32 target operating under AOS/VS, Revision 7.56. The host and
target computers were linked via magnetic tape.

A tape containing all tests was taken on-site by the validation team for
processing. Tests that make use of implementation-specific values were
customized before being written to the tape. Tests requiring
modifications during the prevalidation testing were rot included in
their modified form on the tape. The contents of the cape were loaded
onto an MV/8000 computer and were transferred to the MV/20000 using
XODIAC NETWORK.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the MV/20000, and all executable tests were run
on the ROLM HAWK/32. Results were printed from the host computer, with 9
results being transferred to the host computer via magnetic tape.

The compiler was tested using command scripts provided by Data General
and reviewed by the validation team. The compiler was tested using all
default option I switch settings except for the following:

Option / Switch Effect

3-5

/MAIN identifies the main procedure

Tests were compiled and linked using a single host computer and executed
on the target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF.

3.7.3 Test Site

Testing was conducted at Data General, Research Triangle Park, North
Carolina and was completed on 27 May 1988.

3-6

APPENDIX A

CONFoRK{ANCE STATEMENT

A-1

^A ii~nmonr 4 (1)

DECLARATION OF CONFORMANCS

Compiler Implementer: RolM Mil-Spec Computers

Ada Validation Facility: Institute for Computer Sci.and Techn.

Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compiler Name: Ada/32 Version: 3.00

Host Architecture - ISA: MV/20000 OS&VER #: AOS/VS 7.56

Target Architecture - ISA: HAWK/32 OS&VER #: AOS/VS 7.56

Derived Compiler Registration

Derived Compiler Name: Ada/32 Version: 3.00
Host Architecture - ISA: MVFamily OS&VER #: AOS/VS 7.56
Target Architecture - ISA: MV Family OS&VER #: AOS/VS 7.56

HAWK/32 OS&VER #: AOS/VS 7.56

Implementer'a Declaration

I, the undersigned, representing Rolm Mil-Spec Computers
have implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that Rolm Mil-Spec Computers is the owner
of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

Clare Rice - DG Product Line Manager a

Owner's Declaration

I, the undersigned, representing Data General
take full responsibility for implementation and maintenance of the
Ada compiler(s) listed above, and agree to the public disclosure
of the final Validation Summary Report. I further agree to
continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance are
in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.
I have reviewed the Validation Summary Report for the compiler(s)
and concur with the contents.i /

/ -- ," ' L - -- " ' :

Compliance Statement

Base Configuration:

Compiler: Ada/32 Revision 3.00

Test Suite: Ada Compiler Validation Capability, Version 1.9

Host Computer:

Machine(s): MV/20000
Operating System: OS/VS Revision 7.56

Target Computer:

Machine(s): RonHAW/32
Operating System: OS/V S Revision 7.56

ARTS/32 Revision 2.7
Communications Network:

R1mMil-Spec Caruters has made no deliberate extensions to the
Ada language standard.

Rolm Mil-Spec CoWters agrees to the public disclosure of this
report.

Rolm Mil-Spec Carpiters agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office.

,/. //.7/ : -/ '-.I?

" ' I> Date: . :1a"
Willia L. Goochue, PhD.

Director of Software Engineering
(Company Official)
(Title)

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the ADE/32 Revision 3.0, are
described in the following sections which discuss topics in Appendix F
of the Ada Standard. Implementation- specific portions of the package
STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTEGER is range -32768 .. 32767

type FLOAT is digits 6 range
-7.23700E+75 .. 7.23700E+75
type LONG FLOAT is digits 15 range
-7.32700557733226E+75 .. 7.32700557733226E+75

type DURATION is delta 2** -9 range -2**22 .. 2**22;

end STANDARD;

APPENDIX F OF THE Ada STANDARD

B-1

Attachment 5

This is page F-I of "Appendix F"

ADA PROGRAMMING LANGUAGE REFERENCE MANUAL
ANSI/MIL-STD-1615A

APPENDIX F:

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

ROLM/DGC Ada is a validated implementation of Ada that
conforms to the full ANSI/MIL-STD-1815A standard. That
standard allows individual implementations to set or
define certain language characteristics, such as pragmas,
restrictions on representations clauses, capacity limits,
and so forth.

This appendix describes the language characteristics which
are set or defined by the ROLM/DGC implementation. The
appendix contains these sections:

Page

Pragmas F-2

The Package SYSTEM F-22

Representation Clauses F-24

Unchecked Programming F-27

Characteristics of I/0 Packages F-29

Maximum Sizes of Language Features F-30

Summary of Implementation-Dependent F-31
Real Type Attributes

This is page F-2 of "Appendix F"

ADE-DEFINED PRAGMAS

This section lists and describes pragma statements implemented

in the ADE.

Introduction

Pragmas allow you to exercise some control over how the compiler
processes your programs. Pragmas have no effect on the semantics
of a program. You use pragma statements to instruct the compiler
how to process your programs at compilation time.

Several pragmas are defined in the Ada Language Reference Manual.
Other pragmas are defined by the various implementations of the

language.

The Ada Language Reference Manual (LRM) describes the language
defined standard pragmas and their use. This section provides
additional information on those standard pragmas and defines the
pragmas that are unique to ROLM/DGC Ada.

This section contains two parts. The first part lists pragmas
that are not implemented in the current version of the ADE. The
second part lists the implemented pragmas in alphabetical order,
describes them and provides examples of their use.

Pragmas with No Effect

The following language-defined pragmas have no effect on
compilations in the current version of the ADE:

Pragma Explanation

CONTROLLED Because the compiler does not reclaim unused

storage automatically, this pragma is not needed.
To deallocate storage explicitly, use the generic

procedure UNCHECIEDDEALLOCATION. See LRM, section
13.10, and the "ADE User's Manual," chapter 6.

MEMORYSIZE The package SYSTEM defines the MEMORY_SIZE constant

as 2 * 29 words. You can adjust the maximum
virtual memory size by specifying the /MTOP=n switch

on the ADALINK command. See "ADE User's Manual",
chapter 4.

This is page F-3 of "Appendix F"

Pragmas with No Effect (continued)

OPTIMIZE The compiler does not currently use TIME or SPACE
optimization criteria.

PACK This pragma has no effect in the current version.

SHARED The current version does not implement indivisible
direct read and update operations for any object.
Therefore, there are no objects to which you can
apply this pragma. See LRM, section 9.11.

STORAGEUNIT The package SYSTEM currently defines the storage

unit as a 16-bit word. You can not redefine it in
the current version.

SYSTEM-NAME The package SYSTEM defines this as an object of
enumeration type NAME, for which there is only

one literal allowed in the current version.

Pragmas Implemented in the ADE

The following pages list in alphabetical order all the
pragmas you can use in the ADE.

This is page F-4 of "Appendix F"

pragma ELABORATE

Specifies which library unit bodies (secondary
units) to elaborate before the current compilation
unit.

Format: pragma ELABORATE (library-unit [,library-unit]);

libraryunit is the simple name of the library unit whose
body you want elaborated before the current
compilation unit.

Description

Pragma ELABORATE directs the compiler to cause the body of the
specified library unit or units to be elaborated before elaborating the
current compilation unit. If the current compilation unit is a
subunit, pragma ELABORATE directs the compiler to cause the body of the
specified library unit to be elaborated before elaborating the library
unit which is the ancestor of the current compilation subunit.

Pragma ELABORATE must appear after the context clause for the current
compilation unit and it must specify a library unit named in that
context clause. Furthermore, the specified library unit must have a
body.

Examp Ie.

with EARTHDATA;

pragma ELABORATE (EARTHDATA);

procedure SOLAR_SYSTEM is

EARTH_DATA.TRACKORBIT ;

end SOLAR_SYSTEM;

For more information see LRM, section 10.5.

This is page F-5 of "Appendix F"

pragma ENTRY_POINT

Associates an Ada subprogram name with a specific
entry point label so other language routines can
call or be called by Ada subprograms.

Format: pragma ENTRY_POINT (subprogramname, "entry-point_name");

subprogra_name is the unique name of an Ada subprogram
defined in the declarative part of the
current compilation unit. Do not use
dot notation to specify subprogramname.

entry._pointname is the STRING literal denoting the actual
external label. Use uppercase letters enclosed
in quotes; for example, "FRTN_LIBNAME".

Description

You can use this pragma in either of two ways:

1. A subprogram written in another language can refer to an Ada
subprogram using a labeled entry point defined by this pragma.

2. An Ada subprogram can specify a library routine written in
another language by giving the name of the routine as an entry
point. Pragma ENTRY_POINT is used with pragma INTERFACE in
this case.

Pragma ENTRY_POINT must appear in the declarative part of a block,
in a package specification, or after a compilation unit. You must
specify both arguments.

Example:

procedure MAIN is
function FRTN_OP (X: INTEGER) return BOOLEAN;
pragma INTERFACE (F77, FRTNOP),
pragma ENTRYPOINT (FRTNOP, "FRTNLIBNAME"),

begin

end MAIN;

This is page F-6 of "Appendix F"

pragma INLINE

Specifies the subprogram and/or generic subprograms
that you want expanded inline at each call whenever
possible.

Format: pragma INLINE (name [, name])

name is the subprogram or generic unit you want inlined

at each call; name must be a preceding declarative

item in this declarative part.

Description

Pragma INLINE directs the compiler to insert code for the body of
the named subprogram at each occurrence of a call to that sub-

program. If the named subprogram is a generic unit, the compiler
inserts code for the bodies of all subprograms that are instant!-
ations of that generic unit.

The following restrictions apply to pragma INLINE:

The nesting level of inlined procedures cannot exceed 100.

- Inlining is not allowed for

Subprograms that call themselves recursively;

Subprograms containing exception handlers;
Any unit that declares a task, task type, or

access to a task type.

- A program is erroneous if it inlines a function that
returns an unconstrained object.

Example:

procedure WITH_INLINE is

FIRST, SECOND : INTEGER;
function SQUARE (S : INTEGER) return INTEGER;
pragma INLINE (SQUARE); <- pragma

applies

function SQUARE (S : INTEGER) return INTEGER is to all
begin calls of

return S * S; SQUARE
end SQUARE; in MAIN.

begin
FIRST : SQUARE (2);

SECOND : SQUARE (SQUARE (FIRST));
end WITH_INLINE;

This is page F-7 of "Appendix F"

Pragma INLINE (example continued)

The following shows how the compiler obeys the INLINE directive.
We compare the assembly (.SR) files produced by the compiler after
it processes these two source files:

WITHINLINE.ADA - the same example source as above,

WITHOUTINLINE.ADA - the same source, but without the pragma.

.SR Instructions Corresponding to WITH_INLINE.ADA

begin

FIRST := SQUARE (2),
S : constant INTEGER .= 2;
return S S <- 1st inline expansion

NLDAI 4,0

XVSTA 0,12.,3 " FIRST

SECOND := SQUARE (SQUARE (FIRST)),
S : constant INTEGER : SQUARE (FIRST);
S constant INTEGER := FIRST,

; return S * S; <- 2nd inline expansion
XWMUL 0,19.,3 ,, S
XWSTA 0,17.,3 ;; S

return S * S; <- 3rd inline expansion

XWMUL 0,17.,3 " S
XWSTA 0,14. ,3 ;; SECOND
WRTN

end

function SQUARE (S INTEGER) return INTEGER is
begin

,,return S * S;
XWLDA 0,@-12. ,3| inlined

XWMUL 0,@-12 ,3 I subprogram
XWSTA 0,-8. ,3
WRTN

end

This is page F-8 of "Appendix F

Pragma INLINE (example continued)

SR Instructions Corresponding to WITHOUTINLINE.ADA

• begin

FIRST .= SQUARE (2);

LPEF L3 <- push effective address [L3]=2

LCALL L2,1,1 <- 1st call to SQUARE

XWSTA 0,12. ,3
SECOND := SQUARE (SQUARE (FIRST));

XWSTA 0,17. ,3
XPEF 17. ,3 <- push effective address [17]=4

LCALL L2,1,1 <- 2nd call to SQUARE

XWSTA 0,19. ,3

XPEF 19. ,3 <- push effective address [19]=16

LCALL L2,1,1 <- 3rd call to SQUARE
XWSTA 0,14. ,3
WRTN

end

function SQUARE (S : INTEGER) return INTEGER is

begin

return S * S;
L2:

XWLDA 0,@-12. ,3
XWMUL 0,@--12.,3 I called
XWSTA 0,-B.,3 function
WRTN

end I

L3: 2

END

This is page F-9 of "Appendix F"

pragma INTERFACE

Specifies another language (and calling conventions) for

interfacing with an Ada program.

Format: pragma INTERFACE (language name, subprogram name),

language name is the name of the language of the called

subprogram.

subprogram name is the name of the called subprogram, which

you have called earlier in this declarative

part.

Description:

Pragma INTERFACE must appear as a declarative item in the

declarative part or package specification of the Ada unit that

does the calling. The subprogram name you specify as a pragma
argument must be one you have delared earlier in the same

declarative part or package specification.

Pragma INTERFACE allows you to call program units written in
other languages. A specification for the named subprogram must

be written in Ada. Pragma INTERFACE allows the body of the
subprogram to be written in the named language.

Pragma INTERFACE may appear at the place of a declarative item in
a declarative part of a subprogram or package. The subprogram

mentioned must be a subprogram declared earlier in the same

declarative region.

The interface runtime requires your program to include the

following pragma LOAD statements (in this order), which ensure
that corresponding objects are loaded:

- pragma LOAD ("ADEROOT?:RUNTIMES:INTERFACELRT_TRIGGGER");
- pragma LOAD ("LANGRT.LB);

[LANGRT.LB must be accessible via one of the system provided
file access methods (searchlist, links, etc.]

The IMPORT command does this for you automatically, and you

should use it to import routines written in F77, C, or PASCAL.

Ada currently supports the calling of subprograms written in F77,
PASCAL, C, MASM and ASSEMBLY. You can call any language that obeys
he common calling conventions of DG languages, but will receive

a compiler warning that the language is not explicitly supported.

This is page F-10 of "Appendix F"

The Ada interface traps any runtime error in the called routine
and raises the PROGRAMERROR exception in the Ada caller. Before
Revision 2.30 errors in the called (non-Ada) routine would cause
a stack traceback and the program would terminate.

The Ada interface suspends Ada tasking during the call to the
non-Ada subroutine.

General Notes.

" The Ada compiler now generates error and/or warning messages
relating to foreign calls.

" Characters within constructs are packed according to DG
alignment requirements for the called language.

Booleans are passed I per word, packing is not done for
arrays or records.

" Return values are not checked for validity.

" Procedure and function calls to other languages do not
support type conversions. Type conversions must be done
explicitly.

Should an error occur within a foreign language PROGRAMERROR
will be raised on return to the Ada program.

" Passing of'ACCESS types is generally allowed, however the
programmer should exercise caution when changing Ada data
structures. A description of 2.40 data formats is provided

at the end of this docurpnt. Data General may change these
formats in a future revision. Programs which depend on the
currently used data formats should be vigorously tested after

receiving each new revision.

" hen foreign subprograms are called, exception handling is
performed by LANGRT. If a foreign subprogram has an error,

that error will be propagated to the calling Ada program as a
PROGRAMERROR.

Foreign subprograms MUST be in the same ring as the calling
Ada program.

This is page F-I of "Appendix F"

General Notes: (continued)

I/O can be done from foreign routines, however it is the
users responsibility to PRAGMA LOAD all necessary runtime
objects. Alternately the programmer can use the template
facility provided by ADALINK.

" The foreign code interface does not support Ada
unconstrained types for any of he languages.

" All appropriate LB's and OB's must be loaded into Ada
programs calling foreign programs. The IMPORT function only
ensures that the OB containing your function and LANG_RT are
pragma loaded. If the foreign code requires additional
runtime support, such as MULTITASKING.OB, the names of all
necessary OB's and LB's need to be added to <interface_package>_B
which is created by IMPORT or by ADALINK templates.

MASM or ASSEMBLY

The MASM and ASSEMBLY options provide the standard Ada calling
conventions. If either is specified the called program (which may
or may not be MASM or ASSEMBLY) is expected to follow Ada calling
conventions and to know how Ada data structures will be formatted.

F77

The F77 option is supported as follows:

F77 Data Type Ada Data Type

INTEGER'4 INTEGER
INTEGER*2 SHORTINTEGER
REAL*4 FLOAT
REAL*8 LONGFLOAT
CHARACTER0I CHARACTER
CHARACTER*N STRING(l..N)
ARRAY ARRAY

NOTES:
Array elements must be of a supported scalar type.
Scalar parameters are passed copy-in copy-out.
One dimension arrays mode IN OUT are passed by reference.
N-Dimension arrays obey copy-in copy-out rules.

This is page F-11.1 of "Appendix F"

C

C is supported as follows:

C Data Type Ada Data Type

SHORTINT SHORTINTEGER

LONG_INT LONGINTEGER

SHORTFLOAT FLOAT

LONGFLOAT LONG-FLOAT

CHARACTER CHARACTER

POINTER ACCESS

ENUMERATION ENUMERATION

ARRAY OF CHARACTER STRING

ARRAY ARRAY

STRUCTURE RECORD

NOTES.
C calling conventions specify pass by value. Therefore only

IN mode is allowed for scalar parameters and structures.

The call interface enforces pass by value for arrays.

PASCAL

The PASCAL option is supported as follows:

PASCAL Data Type Ada Data Type

SHORTINTEGER SHORT-INTEGER

LONG_INTEGER INTEGER

REAL FLOAT

DOUBLE_REAL LONG-FLOAT

BOOLEAN BOOLEAN

CHAR CHARACTER

ENUMERATION ENUMERATION

POINTER ACCESS

ARRAY ARRAY

PACkeD ARRAY OF CHAR STRING

RECORD RECORD

NOTES:
Not supported. RECORD VARIANTS, SET, FILE.

Copy-in , copy-out will be used except for a one dimensional

array of scalars which will be passed by reference for

IN OU.

This is page F-11.2 of "Appendix F"

PL/1

The PL/I option is supported as follows:

PL/I Data Type Ada Data Type

FIXED BINARY (15) SHORTINTEGER
FIXED BINARY (31) INTEGER

FLOAT BINARY (21) FLOAT
FLOAT BINARY (53) LONGFLOAT
POINTER ACCESS
ARRAY ARRAY
RECORD RECORD

NOTES: PL/I is not explicitly supported, however the above data
types may be used IF all data follows standard LANGRT
alignment/space characteristics. Specifying PLI as the
interface language will result in a compilation warning.
Copy-in , copy-out will be used except for a one-dimension

array of scalars which will be passed by reference for
IN OUT.

This is page F-12 of "Appendix F"

pragma LIST

Suspends or resumes the compiler listing file
ouput.

Format: pragma LIST (ON I OFF);

Description

The compiler always produces a listing (.LST) file unless

- you include the /ERRORS switch on the Ada command line
and the compilation units contains no errors;

- the compilation unit includes the statement, "pragma LIST (OFF);"

"Pragma LIST (OFF);" suspends .LST output file listings of
the compilation.

"Pragma LIST (ON);" resumes .LST output.

Example:

procedure MAIN is
type MEMBERS is private;
procedure SORT (LIST: in out MEMBERS);
function HEAD (L: LIST) return MEMBERS;

pragma LIST (OFF); I<- suspends
type MEMBERS is

end MEMBERS;

pragma LIST (ON), <z resumes

begin

end MAIN;

This is page F-13 of "Appendix F"

pragma LOAD

Includes non-Ada object files in the linked program
file for this compilation.

Format. pragma LOAD ("object_file._pathname"),

object-file__pathname is the STRING literal (in quotes) that

denotes the full pathname of the non-Ada

object file you want to load. You need

not include the .OB filename extension.

Description

Pragma LOAD allows you to include foreign (non-Ada) object files
in your program. You can use it in conjunction with pragmas
INTERFACE and ENTRYPOINT to enable Ada procedures to call non-Ada
subprograms.

The Ada Linker includes the named object file when it builds the
Ada program (.PR) file.

Pragma LOAD must appear at the head of a compilation for a body.
When using pragma LOAD with compilation subunits, always specify
the "/READ_SUBUNITS" switch on the ADALINK command line. If you
omit that switch, you may receive this error message from the

Linker:

"Can't get [body) tree for <programunit_name>"

Example:

pragma LOAD ("SEVENUP"); I<- named OB file
with TEXT_10; use TEXTIO; is in the
procedure ADA_CALLS_PLI is current

procedure SEVENJUP (X: out INTEGER); directory.
pragma INTERFACE (PLI, SEVENUP);
pragma ENTRY-POINT (SEVEN_UP, "SEVENUP");,
N : INTEGER;

begin

SEVEN_UP (N);
PUT (N);

end ADACALLS.PLI;

This is page F-14 of "Appendix F"

pragma MAIN

Indicates that a subprogram unit is a main program.

Format: pragma MAIN;

Description

Pragma MAIN designates the main subprogram unit. Place pragma
MAIN immediately after the subprogram you want to be the main
subprogram.

Example:

procedure TEST is <- main procedure

procedure FIRST is

end FIRST;

procedure SECOND is

end SECOND;
begin

end TEST;
pragma MAIN; <- pragma

Another way to distinguish the main subprogram in a compilation
unit is to use the "/MAIN_PROGRAM=name" switch on the Ada command
line. For example, this command

-) ADA/MAINPROGRAM=TEST TEST

compiles the procedure TEST, located in the source file "TEST.ADA"
as a main program. For more information about the Ada command line,
see "ADE User's Manual", Chapter 3.

This is page F-15 of "Appendix F"

pragma MAXTASKS

Specifies the maximum number of Ada tasks you want
active simultaneously.

Format: pragma MAX_TASKS (n)

n is an INTEGER value greater than 0.

Description

Pragma MAXTASKS specifies the maximum number of Ada tasks that
can be active concurrently. If you do not specify the number,

the system gives you a maximum of 50.

This pragma must appear at the head of a compilation. It applies
to all units in the compilation.

Example:

pragma MAX_TASKS(40); <- pragma

I package body TASKS is

task ONE is ...
task TWO is ...
task type THREE_TOFORTY is ...

type REMAININGTASKS is
array (3..40) of THREE_TOFORTY;

MULTITASKS : REMAINING-TASKS;

end TASKS;

You can also specify the maximum number of tasks by using the
"MAXTASKS=n" switch on the ADALINK command. For example,

-) ADALINK/MAXTASKS=40 objectfilename

If you specify a maximum number of Ada tasks with both a pragma
and a switch, the pragma takes precedence. For more information,
see "ADE User's Manual", chapter 4.

This is]-age F-15.1 of "Appendix F"

pragma MV_ECS

Specify the use of the Data General MV External
Calling Sequence.

To optimize code quality, the Ada compiler does not always generate
code which conforms with the Data General MV External Calling Sequence
(ECS). In some cases, however, you will need to indicate to the
compiler that MV ECS is necessary. Subroutines which meet any of the
following criteria must use MV ECS:

MACHINE_CODE subroutines with formal arguments

subroutines called from other DG languages

* subroutines which may be called from outer rings

Use pragma MV_ECS to indicate the need for use of MV ECS. The syntax

for this pragma is:

pragma MV.ECS(unitname [, unit_name...]),

For txample:

pragma MVECS(subprogl, subprog2, subprog3);

This is page F-18 of "Appendix F"

pragma PAGE

Begins a new page in the compiler output listing
file.

Format: pragma PAGE;

Description

The compiler produces a listing (.LST) file unless

1. You have included the /ERRORS switch on the Ada command line
and the compilation units contains no errors;

2. The compilation unit includes the statement, "pragma LIST (OFF);"

If the compiler is producing a listing of the compilation, pragma
PAGE causes the text following the pragma to appear on a new page.

Example:

procedure FIRST is

end FIRST;

pragma PAGE; <- begin new .LST pages
procedure SECOND is /

I .. I /

end SECOND; /
P/

pragma PAGE, /

This is page F-17 of "Appendix F"

pragma PRIORITY

Specifies the priority of a task, a task type, or

a main program unit.

Format: pragma PRIORITY (n);

n is an INTEGER value from I to 10. Lower values

indicate lower priorities.

Description

You assign tasking priorities by including pragma PRIORITY

within appropriate task specifications, or within the outermost

declarative part of a main program.

You can assign each task or task type a priority, but the
assignment is optional. Assigning tasking priorities directs

the system how to handle competing tasks. When more than one

task is eligible for execution at a time, the system executes

them in the order you specify with PRIORITY pragmas.

Ready tasks are queued first by priority number and within

priority by order of their occurrence in the source file (FIFO).
You may assign each task, task type, or main program only one

priority. If you assign more than one priority the system re-

cognizes only the first assignment and ignores the others.

The default task priority is 5.

Example:

procedure OUTER is
pragma PRIORITY (4); <- main procedure priority

... assignment
task type TASK_TYPE is

pragma PRIORITY (7); <- task priority assignment

I end TASKTYPE;

end OUTER,

This is page F-18 of "Appendix F"

pragma SUPPRESS

Suppresses specified runtime checks.

Format: Pragma SUPPRESS (checkidentifier [, [ON=>] namne]),

checkidentifier names the check you want to suppress;
check identifier names listed below.

name is the name of a type, subtype, object
task unit, generic unit, or subprogram.

Description

To suppress certain runtime checks, place pragma SUPPRESS in

the declarative part of a program unit or block, or immediately
within a package specification.

For a program unit or block, check suppression extends from the
occurrence of the pragma to the end of the declarative region

associated with that program unit or block.

For a package,check suppression extends to the end of the scope
of the specified "ON =>" entity. You must declare that entity
immediately within the package specification.

The following table shows the extent of check suppression for
each named entity.

Check suppression for Extends over

An unnamed entity (name omitted) The remaining declarative

region

An object All operations of the object

An object of the base type All operations of the object

or subtype

A task or task type All activations of the task(s)

A generic unit All instantiations of the generic

A subprogram All calls of the subprogram

This is page F-19 of "Appendix F"

pragma SUPPRESS (continued)

Although it is better programming practice to have runtime
exceptions automatically raised, you can suppress them in
order to decrease runtime overhead. When you suppress runtime
checks, you effectively turn off certain program exceptions.
Of course, if an error situation arises after you have suppressed
a check, your compiled program will be erroneous. The following
table sho6s which pr3gram exceptions you turn off when you
suppress checks:

Suppression of Turns off When program detects
this checkname this exception this runtime error

ACCESSCHECK CONSTRAINTERROR Selection or indexing applied to

an object with a null value.

DISCIMINANT CHECK CONSTRAINTERROR Violation of discriminant constraint.

INDEX CHECK CONSTRAINTERROR Out-of-range index values.

LENGTHCHECK CONSTRAINTERROR Wrong number of index components.

RANGE CHECK CONSTRAINTERROR Values exceed range constraint, or
type is incompatible w/constraint.

DIVISIONCHECK NUMERICERROR Division, rem, or mod by zero.

OVERFLOW CHECK NUMERIC_ERROR Operation result exceeds implemented

range.

ELABORATION CHECK PROGRAMERROR Attempt to call a unit before it

is elaborated.

STORAGECHECK STORAGEERROR Over-aliocation of memory space.

Example:

procedure MAIN is

type COLOR is (RED, BLACK);
type TABLE is array (1.8, 1..8) of COLOR;
pragma SUPPRESS (INDEXCHECK, ON=> TABLE); <- suppression extends

X, Y : INTEGER, to all type TABLE

BOARD : TABLE; operations in MAIN.
begin

BOARD (X, Y) .= RED; <- X and Y may not be in
... '. the range 1..8, but

end; that check is

suppressed.

This is page F-20 of "Appendix F"

pragma TASKSTORAGESIZE

Specifies the amount of heap storage space to
allocate for task stacks.

Format: pragma TASKSTORAGESIZE (n);

n is the total number of 2-byte words you want to allocate
for all active task stacks. n can be any INTEGER value,
but only values greater than -I have an effect.

Description

Pragma TASKSTORAGESIZE allows you to reset the amount of heap
space to allocate for all task stacks. The amount of space you
specify should exceed the amount of storage you need at one time
for all active tasks. By default, the system allocates 128K words.

You can also use the "/TASKSTORAGE_SIZE=n" switch on the ADALINK
command line to control the maximum heap space allocated to active
task stacks. If you use both the pragma and the command switch,
the pragma takes priority.

The pragma must appear at the head of a compilation; it applies to
the entire compilation unit.

Resetting MTOP

If you set TASISTORAGESIZE to a value greater than the current
virtual address space will allow, you must reset the maximum
virtual address space by specifying the value of MTOP. MTOP
defines the maximu virtual address for a program. Use the
"/MTOP=n" switch on the ADALINK command, where n specifies how
many megabytes your program will require. The default value of
MTOP is I Mbyte.

For example, this command resets MTOP to 20 Mbytes:

-) ADALINK/MTOP=20 object file

This is page F-21 of "Appendix F"

pragma TASKSTORAGE_SIZE (continued)

Individual Task Storage

By default, the system allocates 2048 words for each active
task stack. If you require a larger or smaller stack for a
particular task or task type stack, use the STORAGESIZE
representation clause. For example, the following clause
directs the coxr.pi>-r to associate task type BIG with a stack of

size N:

for BIG'STORAGESIZE use N;

The minimum stack size that you can specify is 512 words.

Example:

pragma TASKSTORAGESIZE(56_000) I<- value exceeds
procedure MAIN is storage required

... I for all parallel
task ONE is ... ; tasks
for ONE'STORAGE_SIZE use 1_000;

task TWO is
for TWO'STORAGE_SIZE use 2_000; I

task TEN is ...

for TEN'STORAGESIZE use 10_000

end MAIN,

This is page F-22 of "Appendix F"

THE PACKAGE SYSTEM

The predefined library package called SYSTEM declares the following
types, subtypes, and objects which characterize system-specific values and
operations applicable to those values.

This section describes the type, subtype, and object declarations
that comprise the package SYSTEM in ADE. The following lists the
specification of this package, which is outlined in section 13.7 of the LRM.

package SYSTEM is

type ADDRESS is new INTEGER,
type NAME is (MV);

SYSTEMNAME constant NAME := MV;
STORAGEUNIT constant .= 16;
MEMORY_SIZE . constant := 2 29;

MAXINT . constant := (2s*30) - 1 + (2*30);
MININT constant := -MAX_INT - 1;
MAXDIGITS constant := 15;
MAXMANTISSA . constant 31;
FINEDELTA constant := 2.0 ** (-30);

TICK constant = 0.1,

subtype PRIORITY is INTEGER range 1..10;

end SYSTEM;

Type or Constant Defined as Explanation

ADDRESS INTEGER Address clauses and

attributes (P'ADDRESS)
return objects of the
derived type ADDRESS.

NAME MV The enumeration type

NAME declares one
object: the literal MV.

SYSTEMNAME MV SYSTEM_NAME is an object

of type NAME and is

initialized to MV.

This is page F-23 of "Appendix F"

Package SYSTEM (continued)

SYSTEM Type
or Constant Defined as Explanation

STORAGEUNIT 16 Denotes the number of bits
per storage unit.

MEMORYSIZE 2**29 Denotes the number of
available storage units.

MAXINT (2*"30)-I+(2"'30) Denotes the highest value

= 2_147_483_647 of predefined INTEGER types.

MIN_INT -MAXINT - I Denotes the lowest (most
= -2_147_483_648 negative) value of pre-

defined INTEGER types.

MAXDIGITS 15 Denotes largest number of

significant decimal digits
in a floating-point

constraint.

MAXMANTISSA 31 Denotes the largest

allowed number of binary
digits in the mantissa of
model numbers of a fixed-
point subtype.

FINEDELTA 2.0--(-30) Denotes the smallest delta

allowed in a fixed-point
constraint that has the
range constraint -1.0..1.0.

TICK 0.1 Denotes the basic clock

period, in seconds.

PRIORITY 1..10 Subtype PRIORITY (base

type INTEGER) declares

the range of values you
can use on pragma PRIORITY

statements.

This is page F-24 of "Appendix F"

Representation Clauses

This section describes the use of representation clauses in
the ADE. You may use representation clauses for either of
two purposes:

1. To specify a more efficient representation of data in
the underlying machine.

2. To communicate with features outside the domain of the
Ada language; for example, peripheral hardware.

The Ada language provides four classes of representation clauses,
as the following table describes.

Clause Class Specifies

Length clause The amount of storage you want

associated with a type.

Enumeration representation The internal codes for the literals

of an enumeration type.

Record representation The storage order, relative position,

and size of record components.

Address clause The required address in storage for
an entity.

Length Clause

You can use the 'STORAGESIZE attribute only for reserving
storage for activation of a task or a task type. For example:

BITS constant:=l;

BYTES constant:=8'BITS;
I3YTES :constant:=10240BYTES;

task MONITOR is ...

for MONITOR'STORAGESIZE use 4"KBYTES; <- length

clause

This is page F-25 of "Appendix F"

Representation Clauses (continued)

Enumeration Representation

We now support enumeration representation clauses as speci-
fied in the LRM, section 13.3. All enumeration literals must be
provided with distinct static integer codes; the sequence of
integer codes specified for the enumeration type must be
montonicly increasing.

There are, however, two restrictions: the range of internal
codes is any SHORT_INTEGER, and enumeration types with
representation clauses are not allowed as an index type of an
array type definition (see LRM, section 3.6).

Change of Representation

Declaration of a derived type in order to specify an alterna-
tive representation is supported as specified in the language
reference manual. A change of representation can be accomplished
using as explicit conversion.

Operations of Discrete Types

Discrete attributes 'POS, 'VAL, 'SUCC, and 'PRED with a
discrete type or subtype whose base type is enumeration with a
representation clause, will involve additional runtime overhead
(as implied in the LRM, section 13.3) if the argument is
non-static. If the argument is static there is no additional
runtime overhead.

This additional runtime overhead is a mapping from potenti-
ally non-contiguous internal codes to position numbers, and vice
versa.

The aforementioned attributes of other discrete types are
unaffected.

Type Conversions

Explicit conversions between enumeration types where either
base type has a representation clause will involve additional
runtime overhead (as explained in section 3.5.5) if the argument
is non-static. If the argument is static there is no additional
runtime overhead.

This is page F-25.1 of "Appendix F"

Case Statements

If the base type of the case statement expression is an
enumeration type with a representation clause, the resulting code
will be optimized with respect to space rather than time (i.e.

sequential compares-never-branch tables will be used to determine
the proper case statement alternative).

Case statements with types other than enumeration with a
representation clause are unaffected.

Loop Statements

FOR loops on which the base type of the loop parameter is
an enumeration type with a representation clause will involve
additional runtime overhead. (See the 'SUCC 'PRED explanation in
the LRM, section 3.5.5.)

Loop statements with a for iteration scheme where the base
type of the loop parameter is not enumeration with a representa-
tion clause are unaffected.

Parameter Associations

If an actual parameter has the form of a type conversion
where the base type of the type mark is enumeration with a repre-
sentation clause, there will be runtime overhead in performing the
conversion (see LRM, section 4.6). The amount of overhead
depends on the parameter (see LRM, section 6.4.1). and whether
the expression given as the operand is static.

Explicit conversions as actual parameters with types other
than enumeration with a representation clause are unaffected.

Record Representation

Representation of record types in ADE is the same as in standard
Ada, with certain restrictions. Specifically, you cannot use
record representation clauses to specify alignment and component
locations for the following kinds of record types:

- Record types with discriminants.

- Record types with variant parts.

- Record types with array components.

When specifying component storage, you can cross only one 16-
bit word boundary. You cannot specify the storage for composite,
FLOAT, or LONGFLOAT components. The compiler automatically
determines the required storage for components of those restricted
types. You can specify storage for all the remaining component
types, as the language permits.

This is page F-25.2 of "Appendix F"

The following example shows a valid record representation

specification:

type IUFL is

record
RETURNFLAGS INTEGER range 0 15
TERMINATIONFIELD INTEGER range 0 7;

PROCESSID INTEGER range 1 255;
end record;

for IUFL use
record

RETURNFLAGS at 0 range 0 4;
TERMINATIONFIELD at 0 range 5 7;
PROCESSID at 0 range 8 15;

end record;

for IUFL'SIZE use SYSTEM.STORAGE_UNIT

These component clauses specify the order, position, and size
of IUFL fields relative to the start of the IUFL record. More

specifically, they ensure IUFL fields match the following

structure of the ?IUFL offset (user flag word) in a ?IREC

system call:

0 4 5 7 8 15I - - I
I ?RETURN Termination I PID of termin-

I flags i field I ating process I
i __I _ _

Structure of offset ?IUFL (user flag word)

In addition, ADE does not allow components to overlap storage
boundaries. That is, record fields cannot cross more than one
16-bit word boundary.

This is page F-26 of "Appendix F"

Address Specification

In the ADE, you can use address clauses to specify only the
fixed internal names for Ada subprograms. Wherever possible,
use pragma ENTRYPOINT to assign internal names to subprograms.

The compiler recognizes address clauses of this form only:

for SUBPROGRAMNAME use at ####;

where #### is a STANDARD.ADDRESS value in the range 3001 to 5000.
The compiler treats #### as a label name of the form E#### for
the entry point "SUBPROGRAMNAME."

For example, the following program segment uses an address
clause to assign the fixed internal name "E3001" to the
subprogram "SEVEN_UP".

procedure SEVEN_UP(M:out INTEGER);
for SEVENUP use at 3001; <- address
procedure SEVEN_UP (M: out INTEGER) is clause

end SEVEN UP;

Code written in assembly language can call Ada code through
the internal label. Label values 0 through 3000 are reserved
for runtime routines, the Debugger and the Kernel. Label
values 3001 through 5000 are available for your use.

This is page F-27 of "Appendix F"

UNCHECKED PROGRAMMING

The ADE implements the predefined generic library subprograms
UNCHECKEDDEALLOCATION and UNCHECKED_CONVERSION. The following

paragraphs explain how to use these subprograms.

Procedure UNCHECKEDDEALLOCATION

You can use the generic procedure UNCHECKEDDEALLOCATION to
explicitly deallocate dynamic objects that are designated by
values of access types.

To deallocate dynamic objects explicitly, your program must
instantiate this procedure for a particular object and access
type. In the program body, a call to the instantiated procedure
specifies the dynamic object as a parameter. When that call is
executed, the specified object is deallocated and its value is
set to null. The following example shows how this works.

Example:

I with UNCHECKED_DEALLOCATION;

package TREELABELER is

type LABELTYPE is private;
type NODE;

type TREE is access NODE;

type NODE is record

LABEL LABEL-TYPE;
LEFT TREE;
RIGHT TREE;

end record,

procedure DISPOSE is new UNCHECKED_DEALLOCATION (NODE, TREE);
procedure LABEL_ROOT (LABEL : in LABEL_TYPE;

ROOT : in out TREE;
LABELLED_TREE out TREE);

end TREELABELER;

package body TREELABELER is

procedure LABELROOT (LABEL in LABELTYPE;
ROOT in out TREE;

LABELLED_TREE .out TREE);
ROOT1, ROOT2 : NODE;
begin

DISPOSE (ROOT1);

end LABEL-ROOT;

end TREE_LABELER;

This is page F-28 of "Appendix F"

UNCHECKEDDEALLOCATION (continued)

In this example, the call to the procedure DISPOSE deallocates the

dynamic object designated by the access value ROOTI, and resets

ROOTI to null. Note, however, that if the enclosing procedure

uses the other access value, ROOT2, to designate the same object

as ROOTI, this will result in an erroneous program since the object

no longer exists. You must be wary of sim:lar "dangling references"

when using the procedure UNCHECKEDDEALLOa.ATION.

Function UNCHECKED_CONVERSION

The generic function UNCHECKEDCONVERSION -llows you to return the
value of an IN parameter as a value of a tirget type. The actual

bit pattern corresponding to that paramete:" value does not change.

The function UNCHECKEDCONVERSION is a uni" in the ADE SYSTEM

library. Here is the visible part of that function:

generic

type SOURCE is limited private;

type TARGET is limited private;

function UNCHECKEDCONVERSION (S : SOUr , ') return TARGET;

function UNCHECKEDCONVERSION (S . SOU. Z) return TARGET is

pragma SUPPRESS (RANGECHECK);

begin

return S;

end UNCHECKEDCONVERSION;

This is page F-29 of "Appendix F"

UNCHECKEDCONVERSION (continued)

For instantiations of this generic function, types SOURCE and
TARGET must be of the same class and the same length. Note. the
current revision of ADE does not allow SOURCE and TARGET to be
array types.

Example:

with UNCHECKEDCONVERSION, ALPHA,
package BETA is

type TEST_NAME is private,
type DATA is record

ISVALID : BOOLEAN;
TESTOBJECT : TESTNAME,

end record;

function CONVERTTOBETADATA is new
UNCHECKEDCONVERSION (ALPHA.INFO, DATA);

function CONVERT_FROM_BETADATA is new

1WCHECKEDCONVERSION (DATA, ALPHA.INFO);

end BETA,

For more information about unchecked conversions, see LRM,
Section 13.10.

CHARACTERISTICS OF ADE I/O PACKAGES

The standard input and output files in TEXT_10 correspond to
the AOS/VS generic files @INPUT and @OUTPUT respectively. For
more information about AOS/VS generic files, see the DGC manual,
"Learning to Use Your AOS/VS System."

The maximum value for TEXTIO.COUNT and TEXTIO.FIELD is
SYSTEM.MAXINT.

The FORM parameter of the TEXTIO.OPEN procedure is currently
not used.

Type TEXTIO.FILE_TYPE is an access type.

For more information about input/ouput operations in the ADE,
see "ADE User's Manual", chapter 6.

This is page F-30 of "Appendix F"

MAXIMUM SIZE LIMITS IN ADE

The package LIMITS specifies the following absolute limits on
the use of Ada language features:

Compilation Maximum

step Language Feature or amount

Syntax Length of identifiers 120

parsing

Length of line 120

Semantics Discriminants in constraint 256
checking

Associations in record 256

aggregate

Fields in record aggregate 256

Formals in generic 256

Nested contexts 250

Generating Indices in array aggregate 128

machine code
Parameters in call 128

Nesting depth of expressions 100

Nesting depth of inlined 100

expressions

Nesting depth of packages 100
with tasks

This is page F-31 of "Appendix F"

Summary of Implementation-Dependent Real Type Attributes

Float Types:

T'MACHINERADIX = 16

T'MACHINEMANTISSA = number of T'MACHINERADIX (hex) digits in
mantissa. Value is 6 for FLOAT, 14 for

LONGFLOAT

T'MACHINEEMAX = 63
maximum exponent for MV floating types,
base 16

T'MACHINEEMIN = -64
minimum exponent for MV floating types,

base 16

T'MACHINEROUNDS = TRUE

T 'MACHINEOVERFLOWS = TRUE

T'SAFEEMAX = 252
formula: log2 (T'MACHINERADIX) *

T'MACHINEEMAX

T'SAFESMALL = 2.0 (-T'SAFEEMAX - 1)

T'SAFELARGE = 2.0 T'SAFEEMAX 1 (1.0 - 2.0 '*

(-T-'BASE MANTISSA)

Fixed Types:

T'MACHINEROUNDS = TRUE

T'MACHINEOVERFLOWS = TRUE

T'BASE'SMALL = T'SMALL

T'BASE'MANTISSA = 31

(Same as SYSTEM.MAXMANTISSA)

T'SAFESMALL = T'BASE'SMALL

T'SAFELARGE = T'BASE'LARGE
also = (2 *1 T'BASE'MANTISSA - 1) 1 T'BASE'SMALL

This is page F-32 of "Appendix F"

Notes:

* All fixed point numbers are stored in 32-bit INTEGERs.

* Floating point types requiring five or less digits of
precision are stored in FLOAT; those requiring six to 14 digits
are stored in LONGFLOAT.

* FLOAT and LONGFLOAT use one bit for the sign and seven
bits for the exponent (of 16) in excess-64 notation. FLOAT has 24
bits available for the mantissa; LONGFLOAT has 56.

" For FLOAT and LONGFLOAT, the smallest representable number in
the MV architecture is T'MACHINERADIX "" (-T'MACHINEEMIN -
16 -- (-65)
(that is, 16#0.10000000000000# 1* 16 *1 (-64))

* For FLOAT and LONGFLOAT, the largest representable number in the
MV architecture is

(i.0 - T'MACHINERADIX -- (-T'MACHINEMANTISSA - 1)
(T'MACHINE,_RADIX T'MACHINEEMAX)

(that is, 16#0.FFFFF# 2 (63) for FLOAT, and
16#0.FFFFFFFFFFFFFF# 2 (63) for LONG_FLOAT).

End of Appendix F.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

.BIG_IDl 119(A),(1)
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 119(A),(2)
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 60(A),(3),59(A)
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 60(A),(4),59(A)
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_INTLIT 117(0),(298)
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG_REALLIT 114(0),(69.OEI)
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

C-1

$BIGSTRINGI 60(A)
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIGSTRING2 59(A),(l)
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDI.

$BLANKS 100(")
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal
whose value is
TEXT IO.COUNT'LAST.

$FIELD_LAST 2147483647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITHBADCHARS X!@#$A&'Y
An external file name that
either contains invalid
characters or is too long.

$FILENAMEWITH WILDCARDCHAR XYX*
An external file name that
either contains a wild card
character or is too long.

$GREATERTHANDURATION 4194303.998
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THANDURATION BASE LAST 4194305.000
A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGAL EXTERNALFILENAMEl BAD-CHARACTER* ^

An external file name which
contains invalid characters.

C-2

$ILLEGALEXTERNALFILENAME2 MUCHMUCHTOOLONGNAMEFOR_A_FILE

An external file name which

is too long.

$INTEGERFIRST -2147483648

A universal integer literal

whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647

A universal integer literal
whose value is INTEGER'LAST.

$1NTEGERLASTPLUS_1 2147483648

A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -4194305.000

A universal real literal that

lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value

in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -4194305.000

A universal real literal that is

less than DURATION'BASE'FIRST.

$MAX_DIGITS 15

Maximum digits supported for

floating-point types.

$MAXIN LEN 120

Maximum input line length

permitted by the implementation.

$MAX_INT 2147483647

A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648

A ljnivprsal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINTBASEDLITERAL (2:),113(0),(11:)

A universal integer based

literal whose value is 2#11#

with enough leading zeroes in

the mantissa to be MAXINLEN
long.

C-3

$MAXLENREALBASEDLITERAL (16:),112(0),(F.E)
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRINGLITERAL 120(A)
A string literal of size
MAXIN_LEN, including the quote
characters.

$MIN_INT -2127283648
A universal integer literal
whose value is SYSTEM.MIN_ INT.

$NAME not supported
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONGFLOAT, or LONG-INTEGER.

$NEG_BASEDINT 8#37777777776#

A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAXINT.

C-4

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The followinS 27 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CONSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 should be inequality
operators

A35902C: Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINTERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINTERROR when its compatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or CONSTRAINTERROR for reasons not
anticipated by the test.

C35AO3E, These tests assume that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR.

D-1

C37215C, Various discriminant constraints are wrongly expected
E, G, H: to be incompatible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
CONSTRAINTERROR.

C41402A: 'STORAGESIZE is wrongly applied to an object of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MACHINE OVERFLOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACHINEOVERFLOWS may still be TRUE.

C45614C: REPORT.IDENT INT has an argument of the wrong type
(LONGINTEGER).

E66001D: wrongly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
enumeration literal; the function must be rejected (see
Commentary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87BO4B, CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
CC131lB: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADlAOlA: The declaration of subtype INT3 raises CONSTRAINTERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default output
file (after it was closed) with mode INFILE raises NAMEERROR
or USE ERROR; by Commentary AI-00048, MODEERROR should be
raised.

D-2

